Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(23): 233602, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749189

RESUMO

Deterministic sources of multiphoton entanglement are highly attractive for quantum information processing but are challenging to realize experimentally. In this Letter, we demonstrate a route toward a scaleable source of time-bin encoded Greenberger-Horne-Zeilinger and linear cluster states from a solid-state quantum dot embedded in a nanophotonic crystal waveguide. By utilizing a self-stabilizing double-pass interferometer, we measure a spin-photon Bell state with (67.8±0.4)% fidelity and devise steps for significant further improvements. By employing strict resonant excitation, we demonstrate a photon indistinguishability of (95.7±0.8)%, which is conducive to fusion of multiple cluster states for scaling up the technology and producing more general graph states.

2.
Sci Adv ; 4(3): eaao3820, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511735

RESUMO

Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion-a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...